David Neubauer

David Neubauer

David Neubauer

Staff of Professorship for Experimental Atmospheric Physics

ETH Zürich

Institut für Atmosphäre und Klima

CHN O 16.2

Universitätstrasse 16

8092 Zürich

Switzerland

Additional information

Research area

  • Aerosol-cloud interactions
  • Boundary layer clouds and climate
  • Model development and evaluation

Additional information

Research area

  • Aerosol-cloud interactions
  • Boundary layer clouds and climate
  • Model development and evaluation

Publications

2024

  • E. Fons, A. K. Naumann, D. Neubauer, T. Lang, U. Lohmann (2024): Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model, Atmos. Chem. Phys., 24, 8653–8675, DOI: 10.5194/acp-24-8653-2024.
  • A. Kalisoras, A. K. Georgoulias, D. Akritidis, R. J. Allen, V. Naik, C. Kuo, S. Szopa, P. Nabat, D. Olivié, T. van Noije, P. Le Sager, D. Neubauer, N. Oshima, J. Mulcahy, L. W. Horowitz, P. Zanis (2024): Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models, Atmos. Chem. Phys., 24, 7837–7872, DOI: 10.5194/acp-24-7837-2024.
  • J. Mülmenstädt, E. Gryspeerdt, S. Dipu, J. Quaas, A. S. Ackerman, A. M.Fridlind, F. Tornow, S. E. Bauer, A. Gettelman, Y. Ming, Y. Zheng, P.-L. Ma, H. Wang, K. Zhang, M. W. Christensen, A. C. Varble, L. R. Leung, X. Liu, D. Neubauer, D. G. Partridge, P. Stier, P., T. Takemura (2024): General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path, Atmos. Chem. Phys., 24, 7331–7345, DOI: 10.5194/acp-24-7331-2024.
  • F. Ren, J. Lin, C. Xu, J. A.  Adeniran, J. Wang, R. V. Martin, A. van Donkelaar, M. S. Hammer, L. W. Horowitz, S. T. Turnock, N. Oshima, J. Zhang, S. Bauer, K. Tsigaridis, Ø. Seland, P. Nabat, D. Neubauer, G. Strand, T. van Noije, P. Le Sager, T. Takemura (2024): Evaluation of CMIP6 model simulations of PM2.5 and its components over China, Geosci. Model Dev., 17, 4821–4836, DOI: 10.5194/gmd-17-4821-2024.
  • Z. Dedekind, U. Proske, S. Ferrachat, U. Lohmann, D. Neubauer (2024): Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps, Atmos. Chem. Phys., 24, 5389–5404, DOI: 10.5194/acp-24-5389-2024.
  • G. Jordan, F. Malavelle, Y. Chen, A. Peace, E. Duncan, D. G. Partridge, P. Kim, D. Watson-Parris, T. Takemura, D. Neubauer, G. Myhre, R. Skeie, A. Laakso, J. Haywood (2024): How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption, Atmos. Chem. Phys., 24, 1939–1960, DOI: 10.5194/acp-24-1939-2024.

2023

  • E. Fons, J. Runge, D. Neubauer, U. Lohmann (2023): Stratocumulus adjustments to aerosol perturbations disentangled with a causal approach, npj Clim Atmos Sci 6, 130, DOI: 10.1038/s41612-023-00452-w.
  • C. Tully, D. Neubauer, D. Villanueva, U. Lohmann (2023): Does prognostic seeding along flight tracks produce the desired effects of cirrus cloud thinning?, Atmos. Chem. Phys., 23, 7673–7698, DOI: 10.5194/acp-23-7673-2023.
  • K. Jeggle, D. Neubauer, G. Camps-Valls, U. Lohmann (2023): Understanding cirrus clouds using explainable machine learning, Env. Data Sci., 2: e19, 1-11, DOI: 10.1017/eds.2023.14.
  • C. Tully, D. Neubauer, U. Lohmann (2023): Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations, Geosci. Model Dev., 16, 2957–2973, DOI: 10.5194/gmd-16-2957-2023.
  • B. M. Enz, D. Neubauer, M. Sprenger, U. Lohmann (2023): The Dynamical Tropopause Location as a Potential Predictor for North Atlantic Tropical Cyclone Activity, Journal of Climate, 36, 2515-2533, DOI: 10.1175/JCLI-D-22-0479.1.

2022

  • D. Villanueva, A. Possner, D. Neubauer, B. Gasparini, U. Lohmann, M. Tesche (2022): Mixed-phase regime cloud thinning could help restore sea ice, Environ. Res. Lett., 17, 114057, DOI: 10.1088/1748-9326/aca16d.
  • C. Tully, D. Neubauer, N. Omanovic, U. Lohmann (2022): Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model, Atmos. Chem. Phys., 22, 11455–11484, DOI: 10.5194/acp-22-11455-2022.
  • U. Proske, S. Ferrachat, D. Neubauer, M. Staab, U. Lohmann (2022): Assessing the potential for simplification in global climate model cloud microphysics, Atmos. Chem. Phys., 22, 4737–4762, DOI: 10.5194/acp-22-4737-2022.
  • Q. Zhong, N. Schutgens, G. van der Werf, G. van Noije, K. Tsigaridis, S.E. Bauer, T. Mielonen, A. Kirkevåg, Ø. Seland, H. Kokkola, R. Checa-Garcia, D. Neubauer, Z. Kipling, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, J. Zhu, S.G. Tsyro, G. Curci, G., A. Protonotariou, B. Johnson, J.E. Penner, N. Bellouin, R.B. Skeie, G. Myhre (2022): Satellite-based evaluation of AeroCom model bias in biomass burning regions, Atmos. Chem. Phys., 22, 11009–11032, DOI: 10.5194/acp-22-11009-2022.
  • Q. Zhong, N. Schutgens, G.R. van der Werf, T. van Noije, S.E. Bauer, K. Tsigaridis, T. Mielonen, R. Checa-Garcia, D. Neubauer, Z. Kipling, A. Kirkevåg. D.J.L. Olivié, H. Kokkola, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin (2022): Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions, Nat. Commun., 13, 5914, DOI: 10.1038/s41467-022-33680-4.
  • G. A. Kelesidis, D. Neubauer, L.-S. Fan, U. Lohmann, S. E. Pratsinis (2022): Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates, Env. Sci. & Tech., 56 (12), 8610-8618, DOI: 10.1021/acs.est.2c00428. Scripts Figs. 4,S2,S7-9, Data Figs. 4,S2,S7-9, Emissions.
  • M. Salzmann, S. Ferrachat, C. Tully, S. Münch, D. Watson-Parris, D. Neubauer, C. Siegenthaler-Le Drian, S. Rast, B. Heinold, T. Crueger, R. Brokopf, J. Mülmenstädt, J. Quaas, H. Wan, K. Zhang, U. Lohmann, P. Stier, I. Tegen (2022): The Global Atmosphere-aerosol Model ICON-A-HAM2.3 – Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness, Journal of Advances in Modeling Earth Systems, 14, e2021MS002699, DOI: 10.1029/2021MS002699.

2021

  • P. Pelucchi, D. Neubauer, U., Lohmann (2021): Vertical grid refinement for stratocumulus clouds in the radiation scheme of the global climate model ECHAM6.3-HAM2.3-P3, Geosci. Model Dev., 14, 5413–5434, DOI: 10.5194/gmd-14-5413-2021.
  • W. Su, L. Liang, G. Myhre, T. J. Thorsen, N. G. Loeb, G. L. Schuster, P. Ginoux, F. Paulot, D. Neubauer, R. Checa-Garcia, H. Matsui, K. Tsigaridis, R. B. Skeie, T. Takemura, S. E. Bauer, M. Schulz (2021): Understanding top-of-atmosphere flux bias in the AeroCom phase III models: A clear-sky perspective, Journal of Advances in Modeling Earth Systems, 13, e2021MS002584, DOI: 10.1029/2021MS002584.
  • A. Amiri-Farahani, N. E. Olson, D. Neubauer, B. Roozitalab, A. P. Ault, A. L. Steiner (2021): Lake spray aerosol emissions alter nitrogen partitioning in the Great Lakes region, Geophysical Research Letters, 48, e2021GL093727, DOI: 10.1029/2021GL093727.
  • D. Villanueva, D. Neubauer, B. Gasparini, L., Ickes, I. Tegen (2021): Constraining the impact of dust-driven droplet freezing on climate using cloud-top-phase observations, Geophysical Research Letters, 48, e2021GL092687, DOI: 10.1029/2021GL092687.
  • U. Proske, V. Bessenbacher, Z. Dedekind, U. Lohmann, D. Neubauer (2021): How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?, Atmos. Chem. Phys., 21, 5195–5216, DOI: 10.5194/acp-21-5195-2021.
  • J. Gliß, A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, S. E. Bauer, A. M. K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, P. Ginoux, J. J. Griesfeller, A. Heckel, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Laj, P. Le Sager, M. T. Lund, C. Lund Myhre, H. Matsui, G.Myhre, D. Neubauer, T. van Noije, P. North, D. J. L. Olivié, S. Rémy, L. Sogacheva, T. Takemura, K. Tsigaridis, S. G. Tsyro (2021): AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations, Atmos. Chem. Phys., 21, 87–128, DOI: 10.5194/acp-21-87-2021.

2020

  • S. T. Turnock, R. J. Allen, M. Andrews, S. E. Bauer, M. Deushi, L. Emmons, P. Good, L. Horowitz, J. G.  John, M. Michou, P. Nabat, V. Naik, D. Neubauer, F. M. O'Connor, D. Olivié, N. Oshima, M. Schulz, S. Sellar, S. Shim, T. Takemura, S. Tilmes, K. Tsigaridis, T. Wu, J. Zhang (2020): Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, DOI: 10.5194/acp-20-14547-2020.
  • A. Mortier, J. Gliß, M. Schulz, W. Aas, E. Andrews, H. Bian, M. Chin, P. Ginoux, J. Hand, B. Holben, H. Zhang, Z. Kipling, A. Kirkevåg, P. Laj, T. Lurton, G. Myhre, D. Neubauer, D. Olivié, K. von Salzen, R. B. Skeie, T. Takemura, S. Tilmes (2020): Evaluation of climate model aerosol trends with ground-based observations over the last 2 decades – an AeroCom and CMIP6 analysis, Atmos. Chem. Phys., 20, 13355–13378. DOI: 10.5194/acp-20-13355-2020.
  • U. Lohmann, F. Friebel, Z. A. Kanji, F. Mahrt, A. A. Mensah and D. Neubauer (2020): Future warming exacerbated by aged soot effect on cloud formation, Nat. Geosci., 13, 674–680, DOI: 10.1038/s41561-020-0631-0.
  • R. J. Allen, S. Turnock, P. Nabat, D. Neubauer, U. Lohmann, D. Olivié, N. Oshima, M. Michou, T. Wu, J. Zhang, T. Takemura, M. Schulz, K. Tsigaridis, S. E. Bauer, L. Emmons, L. Horowitz, V. Naik, T. van Noije, T. Bergman, J.-F. Lamarque, P. Zanis, I. Tegen, D. M. Westervelt, P. Le Sager, P. Good, S. Shim, F. O'Connor, D. Akritidis, A. K. Georgoulias, M. Deushi, L. T. Sentman, J. G. John, S. Fujimori, W. J. Collins (2020): Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., 20, 9641–9663.DOI: 10.5194/acp-20-9641-2020.
  • J. Mülmenstädt, C. Nam, M. Salzmann, J. Kretzschmar, T.S. L'Ecuyer, U. Lohmann, P.-L. Ma, G. Myhre, D. Neubauer, P. Stier, K. Suzuki, M. Wang, J. Quaas (2020): Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes, Science Advances, 6 (22), art. no. EAAZ6433. DOI: 10.1126/sciadv.aaz6433.
  • N. Bellouin, J. Quaas, E. Gryspeerdt, S. Kinne, P. Stier, D., Watson-Parris, et al. (2020): Bounding global aerosol radiative forcing of climate change, Reviews of Geophysics, 58, e2019RG000660. DOI: 10.1029/2019RG000660.
  • G. Saponaro, M. K.  Sporre, D. Neubauer, H.,Kokkola, P. Kolmonen, L. Sogacheva, A. Arola, G. de Leeuw, I. H. H. Karset, A. Laaksonen, A., U. Lohmann (2020): Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions, Atmos. Chem. Phys., 20, 1607–1626, DOI: 10.5194/acp-20-1607-2020. ECHAM-HAM data.
  • E. Gryspeerdt, J. Mülmenstädt, A. Gettelman, F. F. Malavelle, H. Morrison, D. Neubauer, D. G. Partridge, P. Stier, T. Takemura, H. Wang, M. Wang, K. Zhang (2020): Surprising similarities in model and observational aerosol radiative forcing estimates, Atmos. Chem. Phys., 20, 613–623, DOI: 10.5194/acp-20-613-2020.

2019

  • F. Friebel, P. Lobo, D. Neubauer, U. Lohmann, S. Drossaart van Dusseldorp, E. Mühlhofer, A. A. Mensah (2019): Impact of isolated atmospheric aging processes on the cloud condensation nuclei activation of soot particles, Atmos. Chem. Phys., 19, 15545–15567, DOI: 10.5194/acp-19-15545-2019.
  • D. Neubauer, S. Ferrachat, C. Siegenthaler-Le Drian, P. Stier, D.G. Partridge, I. Tegen, I. Bey, T. Stanelle, H. Kokkola, U. Lohmann (2019): The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity, Geosci. Model Dev., 12, 3609–3639, DOI: 10.5194/gmd-12-3609-2019.
  • R. Dietlicher, D. Neubauer, U. Lohmann (2019): Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2, Atmos. Chem. Phys., 19, 9061-9080, DOI: 10.5194/acp-19-9061-2019.
  • G. S. Fanourgakis, M. Kanakidou, A. Nenes, S. E. Bauer, T., Bergman, K. S. Carslaw, A. Grini, D. S. Hamilton, J. S. Johnson, V. A. Karydis, A. Kirkevåg, J. K. Kodros, U. Lohmann, G. Luo, R. Makkonen, H. Matsui, D. Neubauer, J. R. Pierce, J. Schmale, P. Stier, K. Tsigaridis, T. van Noije, H. Wang, D. Watson-Parris, D. M. Westervelt, Y. Yang, M. Yoshioka, N. Daskalakis, S. Decesari, M. Gysel-Beer, N. Kalivitis, X. Liu, N. M. Mahowald, S. Myriokefalitakis, R. Schrödner, M. Sfakianaki, A. P. Tsimpidi, M. Wu, F. Yu (2019): Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591-8617, DOI: 10.5194/acp-19-8591-2019.
  • I. Tegen, D. Neubauer, S. Ferrachat, C. Siegenthaler-Le Drian, I. Bey, N. Schutgens, P. Stier, D. Watson-Parris, T. Stanelle, H. Schmidt, S. Rast, H. Kokkola, M. Schultz, S. Schroeder, N. Daskalakis, S. Barthel, B. Heinold, U. Lohmann (2019): The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643-1677. DOI: 10.5194/gmd-12-1643-2019.

2018

  • M. Labordena, D. Neubauer, D. Folini, A. Patt, J. Lilliestam (2018): Blue skies over China: The effect of pollution-control on solar power generation and revenues. PLoS ONE 13(11): e0207028. DOI: 10.1371/journal.pone.0207028. Scripts Fig. A/Emissions, Data Fig. A-F/Table J/Emissions.
  • E. Järvinen, O. Jourdan, D. Neubauer, B. Yao, C. Liu, M. O. Andreae, U. Lohmann, M. Wendisch, G. M. McFarquhar, T. Leisner, M. Schnaiter (2018): Additional global climate cooling by clouds due to ice crystal complexity, Atmos. Chem. Phys., 18, 15767-15781, DOI: 10.5194/acp-18-15767-2018. Scripts Fig. 8, Data Fig. 8.
  • H. Kokkola, T. Kühn, A. Laakso, T. Bergman, K. E. J. Lehtinen, T. Mielonen, A. Arola, S. Stadtler, H. Korhonen, S. Ferrachat, U. Lohmann, D. Neubauer, I. Tegen, C. Siegenthaler-Le Drian, M. G. Schultz, I. Bey, P. Stier, N. Daskalakis, C. L. Heald, S. Romakkaniemi (2018): SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 3833-3863. DOI: 10.5194/gmd-11-3833-2018.
  • A. Gilgen,  W. T. K. Huang, L. Ickes, D. Neubauer, U. Lohmann (2018): How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn?, Atmos. Chem. Phys., 18, 10521-10555. DOI: 10.5194/acp-18-10521-2018.
  • U. Lohmann, D. Neubauer (2018): The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2, Atmos. Chem. Phys., 18, 8807-8828. DOI: 10.5194/acp-18-8807-2018. Data, Scripts.
  • M. G. Schultz, S. Stadtler, S. Schröder, D. Taraborrelli, B. Franco, J. Krefting, A. Henrot, S. Ferrachat, U. Lohmann, D. Neubauer, C. Siegenthaler-Le Drian, S. Wahl, H. Kokkola, T. Kühn, S. Rast, H. Schmidt, P. Stier, D. Kinnison, G. S. Tyndall, J. J. Orlando, C., Wespes (2018): The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, p. 1695-1723. DOI: 10.5194/gmd-11-1695-2018.
  • R. Dietlicher, D. Neubauer, U. Lohmann (2018): Prognostic parameterization of cloud ice with a single category in the aerosol-climate model ECHAM(v6.3.0)-HAM(v2.3), Geosci. Model Dev., 11, p. 1557-1576. DOI: 10.5194/gmd-11-1557-2018.
  • B. Gasparini, A. Meyer, D. Neubauer,  S. Münch, U. Lohmann (2018): Cirrus Cloud Properties as Seen by the CALIPSO Satellite and ECHAM-HAM Global Climate Model, J. Clim. 31, p. 1983-2003. DOI: 10.1175/JCLI-D-16-0608.1.

2017

  • D. Neubauer,  M. W. Christensen, C. A. Poulsen, U. Lohmann (2017): Unveiling aerosol–cloud interactions – Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data, Atmos. Chem. Phys. 17, p. 13165-13185. DOI: 10.5194/acp-17-13165-2017.
  • M. W. Christensen, D. Neubauer, C. A. Poulsen, G. E. Thomas,  G. R. McGarragh, A. C. Povey, S. R. Proud, R. G. Grainger (2017): Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate, Atmos. Chem. Phys. 17, p. 13151-13164. DOI: 10.5194/acp-17-13151-2017.
  • A. Amiri-Farahani, R. J. Allen, D. Neubauer, U. Lohmann (2017): Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect, Atmos. Chem. Phys. 17, p. 6305-6322.
    DOI: 10.5194/acp-17-6305-2017.
  • E. Gryspeerdt, J. Quaas, S. Ferrachat, A. Gettelman, S. Ghan, U. Lohmann, H. Morrison, D. Neubauer, D. G. Partridge, P. Stier, T. Takemura, H. Wang, M. Wang, K. Zhang (2017): Constraining the instantaneous aerosol influence on cloud albedo, Proc. Natl. Acad. Sci. USA.
    DOI: 10.1073/pnas.1617765114.

2016

  • W. Ludwig, S. Eggl, D. Neubauer, J. Leitner, M.G. Firneis, R. Hitzenberger (2016): Effective stellar flux calculations for limits of Life-supporting zones of Exoplanets, Mon. Not. R. Astron. Soc. 458 (4), p.3752-3759.
    DOI: 10.1093/mnras/stw509.
  • S. Zhang, M. Wang, S. J. Ghan, A. Ding, H. Wang, K. Zhang, D. Neubauer, U. Lohmann, S. Ferrachat, T. Takeamura, A. Gettelman, H. Morrison, Y. H. Lee, D. T. Shindell, D. G. Partridge, P. Stier, Z. Kipling, C. Fu (2016): On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys. 16, p. 2765-2783.
    DOI: 10.5194/acp-16-2765-2016.
  • S. Ghan, M. Wang, S. Zhang, S. Ferrachat, A. Gettelman, J. Griesfeller, Z. Kipling, U. Lohmann, H. Morrison, D. Neubauer, D. G. Partridge, P. Stier, T. Takemura, H. Wang, K. Zhang (2016): Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability, Proc. Natl. Acad. Sci. USA 113 (21), p. 5804–5811.
    DOI: 10.1073/pnas.1514036113.

2014

  • D. Neubauer, U. Lohmann, C. Hoose, M.G. Frontoso (2014): Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect, Atmos. Chem. Phys. 14, p. 11997-12022.
    DOI: 10.5194/acp-14-11997-2014.
  • K. Zhang, H. Wan, X. Liu, S.J. Ghan, G.J. Kooperman, P.-L. Ma, P.J. Rasch, D. Neubauer, U. Lohmann (2014): Technical Note: On the use of nudging for aerosol-climate model intercomparison studies, Atmos. Chem. Phys. 14, p. 8631-8645.
    DOI: 10.5194/acp-14-8631-2014.

2013

  • D. Neubauer, J.J. Leitner, M.G. Firneis, R. Hitzenberger (2013): The outer limit of the life supporting zone of exoplanets having CO2-rich atmospheres: Virtual exoplanets and Kepler planetary candidates, Planet. Space Sci. 84, p. 163-172.
    DOI: 10.1016/j.pss.2013.04.012.
  • C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R.T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, Fred G. Rose, S. Kato, S.T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, P. Lu (2013): Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys. 13, p. 2347-2379.
    DOI: 10.5194/acp-13-2347-2013.

2012

  • D. Neubauer, A. Vrtala, J.J. Leitner, M.G. Firneis, R. Hitzenberger (2012): The life supporting zone of Kepler-22b and the Kepler planetary candidates: KOI268.01, KOI701.03, KOI854.01 and KOI1026.01, Planet. Space Sci. 73, p. 397-406.
    DOI: 10.1016/j.pss.2012.07.020.
  • J.J. Leitner, D. Schulze-Makuch, M.G. Firneis, R. Hitzenberger, D. Neubauer (2012): Solvents of interest for exotic life on planetary bodies in life supporting zones around main sequence stars, Paleontol. J. 46, p. 1091-1091.
    DOI: 10.1134/S003103011209002X.
  • J.J. Leitner, H. Lammer, M. Leitzinger, P. Odert, M.G. Firneis, R. Hitzenberger, D. Neubauer (2012): The interior of terrestrial-like exoplanets, Paleontol. J. 46, p. 1090-1091.
    DOI: 10.1134/S003103011209002X.

2011

  • D. Neubauer, A. Vrtala, J.J. Leitner, M.G. Firneis, R. Hitzenberger (2011): Development of a model to compute the extension of life supporting zones for Earth-like exoplanets, Orig. Life Evol. Biosph. 41, p. 545-552.
    DOI: 10.1007/s11084-011-9259-9.

2009

  • D. Neubauer (2009): Modellierung des indirekten Strahlungseffekts des Hintergrundaerosols in Österreich, Dissertation. ( http://othes.univie.ac.at/8313/)

2008

  • W. Grimus, L. Lavoura, D. Neubauer (2008): A light pseudoscalar in a model with lepton family symmetry O(2), J. High Energy Phys. 07, p. 051. (arXiv:0805.1175v3 [hep-ph])

2007

  • D. Neubauer (2007): Erweiterung des Standardmodells: Der Leptonsektor und der skalare Sektor mit horizontalen Symmetrien, diploma thesis
JavaScript has been disabled in your browser